Skip to Main Content

Gulam Waris, PhD

Associate Professor

Dr. Waris received his Ph.D. degree in Biochemistry from Aligarh Muslim University, Aligarh, India in 1999. He completed his postdoctoral fellowship on viral hepatitis B and C in the laboratory of Dr. Aleem Siddiqui at the University of Colorado Health Sciences Center (UCHSC), Denver. Dr. Waris was appointed as an Instructor in the Department of Microbiology at UCHSC, and later moved to Division of Infectious Diseases, Department of Medicine at University of California, San Diego, in 2005, as Assistant Project Scientist. Dr. Waris joined the Department of Microbiology and Immunology at Rosalind Franklin University of Medicine and Science in March 2007, as Assistant Professor. 



Chronic liver disease due to infection with hepatitis C virus (HCV) is a major global health problem that currently affects 170 million people. Persistent HCV infections can progress to chronic hepatitis, liver fibrosis, cirrhosis, and ultimately hepatocellular carcinoma. At present, antiviral therapies are limited and prophylactic vaccines are not available, partially due to the lack of a non-primate animal model and an efficient cell culture system. Our work combines molecular biology, genetic tools, biochemical techniques, cell biology and recently developed robust HCV cell culture infection systems to define the molecular mechanisms of viral replication and the determinants of the HCV-host interaction. Specifically, we focus on characterizing the ribonucleoprotein (RNP) complexes to identify the potential anti-viral targets for therapeutic intervention. Our studies also provided the first compelling evidence that HCV induces oxidative stress via calcium signaling and has deep impact on liver failure and incidence of cancer. We demonstrated the molecular mechanisms of activation of several key players including oncogenic transcription factors and proinflammatory molecules in response to oxidative stress that can be used as a drug targets in liver oncogenesis. Our research is aimed at delineating the mechanism by which viral infection induces 1) liver fibrosis; 2) inflammation and liver oncogenesis; 3) lipid metabolism; 4) HCV replication and assembly. These studies will open new avenues for antiviral therapy. 

Selected Publications

  • Patil R, Ghosh A, Sun Cao P, Sommer RD, Grice KA, Waris G, Patil S. Novel 5-arylthio-5H-chromenopyridines as a new class of anti-fibrotic agents.  Bioorg Med Chem Lett. 27(5):1129-1135. 2017.
  • Nguyen CB, Kotturi H, Waris G, Mohammed A, Chandrakesan P, May R, Sureban S, Weygant N, Qu D, Rao CV, Dhanasekaran DN, Bronze MS, Houchen CW, Ali N. (Z)-3,5,4'-Trimethoxystilbene Limits Hepatitis C and Cancer Pathophysiology by Blocking Microtubule Dynamics and Cell Cycle Progression. Cancer Res. 76(16):4887-4896. 2016.
  • McRae S, Iqbal J, Sarkar-Dutta M, Lane S, Nagaraj A, Ali N, and Waris G. Hepatitis C virus induced NLRP3-inflammasome activates the sterol regulatory element binding protein (SREBP) and regulates lipid metabolism. J. Biol. Chem. 12;291(7):3254-67. 2016.
  • Parvaiz F, Manzoor S, Iqbal J, Sarkar-Dutta M, Imran M, and Waris G. Hepatitis C virus NS5A promotes insulin resistance through IRS-1 serine phosphorylation and increased gluconeogenesis. World J. Gastroenterol. 21:12361-12369. 2015.
  • Parvaiz F, Manzoor S, Iqbal J, McRae S, Javed  F, Ahmed Q L, and Waris G. Hepatitis C virus nonstructural protein 5A favors upregulation of gluconeogenic and lipogenic gene expression leading towards insulin resistance: a metabolic syndrome. Arch. Virol.  159:1017-1025. 2014.
  • Iqbal J, McRae S, Mai T, Banaudha K, Dutta S M, and Waris G. Role of hepatitis C virus induced osteopontin in epithelial to mesenchymal transition, migration and invasion of hepatocytes. PLoS ONE, 9:e87464. 2013. 2014.
  • Iqbal J, McRae S, Banaudha K, Mai T, and Waris G. Mechanism of hepatitis C virus (HCV)-induced osteopontin and its role in epithelial to mesenchymal transition of hepatocytes. J. Biol. Chem. 288: 36994-37009. 2013.
  • Parvaiz F, Manzoor S, Iqbal J, McRae S, Javed F, Ahmed L, and Waris G. HCV nonstructural protein 5A favors upregulation of gluconeogenic and lipogenic gene expression leading towards insulin resistance: A metabolic syndrome. Arch. Virol. 1-9. 2013.
  • Presser LD, McRae S, and Waris G. Activation of TGF-β1 promoter by hepatitis C virus-induced AP-1 and Sp1: role of TGF-β1 in hepatic stellate cell activation and invasion. PLoS One, 8(2): 1-19. 2013.
  • Burdette D, Haskett A, Presser L, McRae S, Iqbal J, and Waris G. Hepatitis C virus activates interleukin-beta 1 via caspase-1-inflammasome complex. J. Gen. Virol. 93:235-246. 2012.
  • Presser L, Haskett A, and Waris G. Hepatitis C virus-induced furin and thrombospondin-1 activate TGF-β1: Role of TGF-β1 in HCV replication. Virology,412:284-296. 2011.
  • Burdette D, Olivarez M, Waris G. Activation of transcription factor Nrf2 by hepatitis C virus induces the cell-survival pathway. J. Gen. Virol. 91(3):681-690. 2010.
  • Nasimuzzaman, M., Waris G, Mikoloan, D., Stupack, D.G. and Siddiqui, A. A Hepatitis C virus stabilizes hypoxia-inducible factor 1a and stimulates the synthesis of vasculas endothelial growth factor. J. Virology. 81: 10249-10257, 2007. (N.M. and *G.W contributed equally to this work
  • Waris G, Felmlee, D.J., Negro, F., and Siddiqui, A. Hepatitis C virus infection induces proteolytic cleavage of sterol regulatory element binding proteins (SREBP's) and their phosphorylation via oxidative stress. J. Virology. 81:1-9, 2007.
  • Waris G, Khan, M. A., Khan, S., and Alam, K. Binding of superoxide-modified DNA by cancer antibodies. J. Exp. Clin. Cancer Res. 26: 499-504. 2007.
  • Waris G and H. Ahsan. Reactive oxygen species: Role in the development of cancer and various chronic conditions Journal of Carcinogenesis, 5:1-8, 2006 (Review). 
  • Waris G and A. Siddiqui. Hepatitis C virus-induced oxidative stress activates cyclooxygenase-2 (Cox-2): Role of prostaglandin E 2 in RNA replication, J. Virology. 79:9725-9734, 2005. 
  • Tardif, K. D., Waris G, and Siddiqui A. Hepatitis C virus, ER stress, and oxidative stress, Trends in Microbiol.,13 (4):159-164, 2005 (Review). 
  • Waris G , Turkson J, Hassanein T, and Siddiqui A. Hepatitis C Virus constitutively activates STAT-3 via oxidative stress: Role of STAT-3 in HCV replication,J. Virolology. 79:1569-1580, 2005.